
들어가기에 앞서 일반적인 서버의 목적은 클라이언트 요청에 대해 적절한 응답을 빠르고 효율적으로 반환하는 것입니다.즉, 대부분의 서버는 다음과 같은 단순한 I/O 루틴을 반복합니다. "입력(요청)을 받고 → 출력(응답)을 보낸다." 예를 들어, 웹 서버는 클라이언트의 요청에 따라 정적 파일(HTML, 이미지 등)을 전송하고,WAS(Web Application Server)는 DB에서 읽어온 사용자 데이터를 API 응답으로 보내며,FTP 서버는 파일을 반환합니다. 이러한 동작들은 모두 단순한 코드로 표현할 수 있습니다.read(fd, buffer, size);send(socket, buffer, size);하지만 이 단순한 동작 이면에서는 여러 번의 데이터 복사와 사용자 공간(user space)과 커널..

로그는 왜 중요할까요?단순한 기록처럼 보이던 로그가, 어떻게 시스템 간 데이터 흐름, 복구, 재처리, 확장을 가능하게 만드는 걸까요?이 글에서는 로그 기반 아키텍처의 핵심 철학을 정리했습니다. 들어가기에 앞서 우리는 서비스를 만들 때 다양한 시스템을 함께 사용합니다.데이터베이스(DB): 사용자 정보, 거래 내역 등 구조화된 데이터를 저장캐시(Redis 등): 빠른 응답을 위해 임시로 데이터를 저장검색엔진(Elasticsearch): 텍스트 기반 검색과 분석을 지원분석 시스템(Hadoop, Spark): 데이터를 수집하고 집계하여 비즈니스 인사이트를 도출이 각각의 시스템은 서로 다른 목적과 다른 형식의 데이터 처리 방식을 갖고 있습니다. 문제는 여기서 시작됩니다.이 시스템들이 하나의 흐름 속에서 유기적으로..
- Total
- Today
- Yesterday
- morton order
- implict titling
- ear clipping
- 3d tiles 1.0
- event streaming
- 역수 근사
- cpu i/o
- gltf
- transferto()
- zero-copy
- kernel space
- * to gltf
- .b3dm
- bgsave
- z-order curve
- ear cut
- sendfile()
- * to glb
- event srource
- b3dm to glb
- user space
- 삼각분할
- Cesium
- the unix timesharing system
- redis bgsave
- z-order
- b3dm
- append only
- Kafka
- 3d tiles
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |